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The theorem

Just so we know what we are talking about.

Theorem

Let A be a structure for some language L and let X be a subset
of A. There is an elementary substructure B of A of cardinality at
most ℵ0 · |X | · |L| such that X ⊆ B.

We need to explain a few terms: structure, language, elementary
substructure,
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Language

We mean mathematical languages.

All languages have the usual logical symbols in their vocabulary:

∀,∃,∧,∨,→,¬,=, (, )
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Language

Each language has its own set of specific symbols:

< ‘ordered sets’
∗, e ‘groups’
u,t ‘lattices’
+, ·, 1, 0 ‘fields’
∈ ‘sets’

We’ll use u and t for inf and sup as ∧ and ∨ are already taken.
Often only the specific symbols are deemed part of the language.
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Structure

A structure for a language, L, consists of a set, X , together with
an assignment that associates

constants in L with elements of X

function symbols in L with functions from some (finite) power
of X to X

predicate symbols in L with subsets of (finite) powers of X
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Examples

A structure for {<} consists of a set, X and one subset of X 2,
associated with <.

A structure for {∗, e} consists of a set, X and one function
f : X 2 → X (for ∗) and one designated element x , associated
with e.

A structure for {u,t} consists of a set, X , and two functions
from X 2 to X (one for u, one for t).

A structure for {+, ·, 1, 0} consists of a set, X , two functions
from X 2 to X (one for +, one for ·) and two designated
elements, x and y , to go with 1 and 0.
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Theories

Some symbols come laden with history: consider this structure for
the language {<}.

Underlying set: Z
Interpretation for <: {〈x , y〉 : 7 | x − y}
i.e., x < y means x − y is divisible by 7.

This is unfortunate, but completely legal.
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Theories

Usually we choose our symbols with some intent, e.g., < should
stand for ‘less than’.
Therefore, in this case we commonly stipulate that we only
consider structures where the interpretation of < satisfies a few
properties/formulas:

(∀x)
(
¬(x < x)

)
(∀x)(∀y)

(
(x < y) ∨ (y < x) ∨ (x = y)

)
(∀x)(∀y)(∀z)

((
(x < y) ∧ (y < z)

)
→ (x < z)

)
These formulas together form the theory of linear orders.
That’s what a mathematical theory is: a set of formulas in a
certain language.
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The language {∈}

A structure for {∈} consists of a set, X and one subset of X 2,
associated with ∈.

Wait, wait! What?

Yes, {∈} specifies a language, just like the others and we don’t
treat it differently.

A structure, X , with interpretation E for the symbol ∈ satisfies the
Axiom of Extensionality if

(∀x ∈ X )(∀y ∈ X )(∀z ∈ X )
((

(z E x)↔ (z E y)
)
→ (x = y)

)
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The language {∈}

Very often, the interpretation of ∈ will be ∈ itself, i.e.,

E = {〈x , y〉 : x ∈ y}

And you know that Extensionality holds if

(∀x ∈ X )(∀y ∈ X )
(
(x ∩ X = y ∩ X )→ (x = y)

)
This can be confusing at first but if you master this you’ll have a
very powerful tool in your hands.

See also this afternoon.
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Models

A model for a theory in a certain language is a structure for that
language in which all formulas from the theory are true.

Thus, a model for the theory of linear orders is, surprise, a linearly
ordered set.
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Models

A model for Set Theory would be a set with a specified relation in
which all the axioms of ZFC are true.

Gödel’s incompleteness theorem says we can’t prove their existence
in ZFC itself but that is, for applications, not important.

There are nice sets that, with ∈ interpreted by itself, satisfy a lot
of Set Theory and applications of the Löwenheim-Skolem theorem
to these structures yield many interesting results.
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Substructure

This is easy, you can think of a definition yourself.

Think of suborder, subgroup, subfield, sublattice, . . .
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Elementary substructure

This is quite different; an elementary substructure is much, much
richer than just a substructure.

Definition

Let X be a structure for a language L and Y ⊆ X a substructure.
We say that Y is an elementary substructure of X if for every
formula ϕ of L of the form (∃y)ψ(y , x1, . . . , xn) and all
a1, . . . , an ∈ Y : if ϕ(a1, . . . , an) is true in X then there is an a ∈ Y
such that ψ(a, a1, . . . , an) is true in X .

You can then prove that ψ(a, a1, . . . , an) is, in fact, true in Y .
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Examples

Notation: Y ≺ X means Y is an elementary substructure of X .
The field Q is not an elementary subfield of R.
(∃x)(x · x = 1 + 1) is true in R, but there is no q ∈ Q such that
q · q = 1 + 1 is true in R (nor in Q).
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Examples

The linearly ordered set Q is an elementary substructure of the
linearly ordered set R.

This seems obvious, both look superficially the same, but the proof
is far from trivial.
It requires a thorough investigation of the structure of the formulas
of the language and the kinds of subsets of R (or Q) that they
decribe.
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And yet . . .

The Löwenheim-Skolem theorem says that there are very many
elementary substructures of a given structure.

The difference is that we have no idea how to describe them
explicitly but, for us, that is not important.

The proof of the Löwenheim-Skolem theorem involves the Axiom of
Choice (the simultaneous choice of the as, for all ϕ and a1, . . . , an).
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Skolem functions

The choice functions mentioned above are known as Skolem
functions.
Every formula ϕ of the form (∃y)ψ(y , x1, . . . , xn) determines a
function Fϕ : X n → P(X ), defined by

Fϕ(x1, . . . , xn) = {y : ψ(y , x1, . . . , xn)}

A Skolem function for ϕ is a choice function for Fϕ (fix some
x0 ∈ X in advance and set fϕ(x1, . . . , xn) = x0 whenever
Fϕ(x1, . . . , xn) = ∅).

K. P. Hart Applications of the Löwenheim-Skolem theorem. Part I
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The proof

Once the Skolem functions are in place we can take, given Y ⊆ X ,
the smallest subset Z of X that contains Y and is closed under all
Skolem functions.
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A Factorization Theorem

Theorem (Mardešić)

Let f : X → Y be a continuous surjection between compact
Hausdorff spaces. Then there are a compact Hausdorff space Z
and continuous maps h : Z → Y and g : X → Z such that
f = h ◦ g, dim Z = dim X and w(Z ) = w(Y ).

How does this follow from the Löwenheim-Skolem theorem?
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Apply the theorem

The family of, 2X , of all closed subsets of X is a lattice, with ∩
and ∪ as its binary operations.

The family Y = {f −1[F ] : F ∈ 2Y } is a sublattice of 2X .

Since
∣∣{∩,∪}∣∣ = 2 the Löwenheim-Skolem theorem gives us an

elementary sublattice Z of 2X such that Y ⊆ Z and |Z| = |Y|.
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Make a space out of Z

From Z we create our space Z :

Z is the set of ultrafilters on Z
{F ∗ : F ∈ Z} is a base for the closed sets of Z , where
F ∗ = {z ∈ Z : F ∈ z}.
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Z is compact Hausdorff

That Z is compact follows almost by construction.

That Z is Hausdorff follows by elementarity.
Let z1 6= z2; use ‘ultra’ to find F1 ∈ z1 and F2 ∈ z2 such that
F1 ∩ F2 = ∅.
In 2X the following is true:

(∃G )(∃H)
(
(G ∪ H = X ) ∧ (G ∩ F1 = ∅) ∧ (H ∩ F2 = ∅)

)
Why? Because X is normal.
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Z is compact Hausdorff

Note X , ∅ ∈ Z, by elementarity.
(Use (∃!x)(∀y)(y ∪ x = x) and (∃!x)(∀y)(y ∩ x = x) )

So we can find G ,H ∈ Z that make the same formula true.

Now note that Z \ G ∗ and Z \ H∗ are disjoint neighbourhoods of
z1 and z2 respectively.
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Dimension

Definition (Lebesgue)

dim X 6 n if every finite open cover has a (finite) open refinement
of order at most n + 1
(i.e., every n + 2-element subfamily has an empty intersection).

There is a convenient characterization.

Theorem (Hemmingsen)

dim X 6 n iff every n + 2-element open cover has a shrinking with
an empty intersection.
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Dimension

Here is Hemmingsen’s characterization of dim X 6 n reformulated
in terms of closed sets and cast as a formula, δn, in the language
of lattices

(∀x1)(∀x2) · · · (∀xn+2)(∃y1)(∃y2) · · · (∃yn+2)[
(x1 u x2 u · · · u xn+2 = 0)→(

(x1 6 y1) ∧ (x2 6 y2) ∧ · · · ∧ (xn+2 6 yn+2)

∧ (y1 u y2 u · · · u yn+2 = 0)

∧ (y1 t y2 t · · · t yn+2 = 1)
)]
.
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The Löwenheim-Skolem theorem
The theorem put to work

Dimension

Elementarity: 2X and Z satisfy δn for exactly the same values of n.

For, ¬δn also determines a Skolem function (a constant one).

Now apply some topology (swelling and shrinking) to conclude
that the full family, 2Z , of closed sets of Z satisfies δn for exactly
the same values of n as Z does.

We conclude dim X = dim Z .
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Weight

What about the weight of Z ?

Probably larger than that of Y , but we could have started with a
base, C, for the closed sets of Y , of cardinality w(Y ), that is also a
lattice, and apply the Löwenheim-Skolem theorem to
{f −1[F ] : F ∈ C}.
This yields a Z of the correct weight.
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The Löwenheim-Skolem theorem
The theorem put to work

The maps g and h

The factoring maps are easily defined:

for x ∈ X consider {Z ∈ Z : x ∈ Z}; this is a filter on Z that is
contained in a unique ultrafilter. That ultrafilter will be g(x).

This is part of a general kind of duality between compact
Hausdorff spaces and (normal, distributive) lattices: embeddings
are dual to surjections and vice versa.
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